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Since the availability of data from direct numerical simulation (DNS) of turbulence,
researchers have utilized the joint PDFs of invariants of the velocity gradient tensor
to study the geometry of small-scale motions of turbulence. However, the joint PDFs
only give an instantaneous static representation of the properties of fluid particles and
dynamical Lagrangian information cannot be extracted. In this paper, the Lagrangian
evolution of the invariants of the velocity gradient tensor is studied using conditional
mean trajectories (CMT). These CMT are derived using the concept of the conditional
mean time rate of change of invariants calculated from a numerical simulation of
isotropic turbulence. The study of the CMT in the invariant space (RA, QA) of
the velocity-gradient tensor, invariant space (RS , QS ) of the rate-of-strain tensor,
and invariant space (RW ,QW ) of the rate-of-rotation tensor show that the mean
evolution in the (Σ,QW ) phase plane, where Σ is the vortex stretching, is cyclic with a
characteristic period similar to that found by Martin et al. (1998) in the cyclic mean
evolution of the CMT in the (RA, QA) phase plane. Conditional mean trajectories in
the (Σ,QW ) phase plane suggest that the initial reduction of QW in regions of high
QW is due to viscous diffusion and that vorticity contraction only plays a secondary
role subsequent to this initial decay. It is also found that in regions of the flow with
small values of QW , the local values of QW do not begin to increase, even in the
presence of self-stretching, until a certain self-stretching rate threshold is reached, i.e.

when Σ ≈ 0.25 〈QW 〉1/2. This study also shows that in regions where the kinematic
vorticity number (as defined by Truesdell 1954) is low, the local value of dissipation
tends to increase in the mean as observed from a Lagrangian frame of reference.
However, in regions where the kinematic vorticity number is high, the local value of
enstrophy tends to decrease. From the CMT in the (−QS , RS ) phase plane, it is also
deduced that for large values of dissipation, there is a tendency for fluid particles
to evolve towards having a positive local value of the intermediate principal rate of
strain.

† Author to whom correspondence should be addressed: email julio.soria@eng.monash.edu.au.
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1. Introduction

The evolution of the velocity gradient tensor (VGT) following a fluid particle is of
primary importance in the understanding of the kinematics and dynamics of turbu-
lence. Owing to its Galilean invariance property, the VGT contains significant fluid
mechanics information independent of a non-accelerating observer. The dynamical
behaviour of the VGT is of fundamental importance because it governs the mechan-
ism of vortex stretching which in turn contributes to the energy cascade process in
turbulent flows.

Computations of forced homogeneous isotropic turbulence can be used to study
the dynamical mechanisms in the evolution of the VGT. Direct numerical simulation
(DNS) of homogeneous isotropic turbulence is well established with a history of
over two decades dating back to the original simulations by Orszag & Patterson
(1972). Homogeneous isotropic turbulence, an idealization of general turbulent flows
(including grid turbulence), assumes that all statistical properties are independent
of position and all mean properties concerning a set of points are invariant under
any arbitrary rotation of the set of points and the coordinate axes. Even though
these are restrictive simplifying assumptions, isotropic turbulence has attracted much
interest from the turbulence community because there exists sufficient work sug-
gesting that high-Reynolds-number turbulent flows can at least be considered to be
locally isotropic (see Seyed & Veeravalli 1994 and references therein). Many impor-
tant features of turbulence, such as vortex stretching and viscous dissipation, are
present in homogeneous isotropic turbulence and can be investigated in great detail
using DNS data. These processes are representative of similar phenomena found
in many common turbulent flows. An investment of effort in trying to understand
the detailed properties and structure of isotropic turbulence can provide revealing
insights into the physics of more realistic turbulent flows, e.g. wakes, mixing layers,
jets etc.

Traditionally, analyses of DNS data have been restricted to Eulerian flow variables
as it is computationally expensive to acquire Lagrangian information using DNS
data. However, recent advances in supercomputer technology have allowed Yeung,
Girimaji & Pope (1988), Yeung & Pope (1989), Girimaji & Pope (1990b) and Yeung
(1994) to conduct studies related to the Lagrangian evolution of velocity gradients.
As a result of these investigations, Girimaji & Pope (1990a), She, Jackson & Orszag
(1991) and Cantwell (1992) have proposed models for the evolution of the VGT.
The simplest model, known as the restricted Euler model, was first proposed in
a study by Vieillefosse (1984). This model correctly reproduced some of the now
well-known properties of the VGT, namely that the inclination of the intermediate
rate of strain is positive (see Ashurst et al. 1987 and Kerr 1987), and the tendency
for the vorticity vector to be parallel with the direction of the intermediate rate of
strain (see Ashurst et al. 1987). However, Girimaji & Speziale (1995) point out that the
Reynolds-averaged restricted Euler equation violates the mean momentum balance for
most homogeneous turbulent flows. To overcome this problem Girimaji & Speziale
(1995) proposed another model derived from the Navier–Stokes equations with a
simplification similar to the restricted Euler model but imposed on the fluctuating
velocity gradient field. A further shortcoming of the restricted Euler model is that its
solutions become singular in finite time. In order to partially overcome this problem,
Dopazo, Valiño & Martin (1993) introduced a linear model for the viscous terms in
the evolution equation and showed that the resulting non-singular solutions reproduce
the properties of the VGT mentioned above.
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In the topological approach introduced by Chong, Perry & Cantwell (1990), the
structure and evolution of the VGT, the rate-of-strain tensor and the rate-of-rotation
tensor are carried out by not studying these tensors directly but by investigating their
invariants. This topological methodology was first applied by Chen et al. (1990) to
study turbulent compressible and incompressible mixing layer flows. The method-
ology has its roots in critical point theory (Perry & Chong 1987) and was later
extended to be applicable in the interpretation of three-dimensional flows by Chong
et al. (1990). The approach has made it possible to correlate the different invari-
ants of the three tensors in an attempt to understand the structure of turbulent
flows in a non-rotating frame of reference. Following a similar approach, the present
study uses joint probability density functions (PDFs) and conditional averages to
investigate the relationship between the various invariants. However, the method is
extended further and an investigation of the Lagrangian dynamics of invariant quan-
tities is conducted using the conditional mean trajectories (CMT) in invariant phase
space.

This new method involves the calculation of the mean time rate of change of
the invariants conditioned on the values of the invariants which gives a conditional
vector field in the phase plane of an invariant pair. This conditional vector field can
then be integrated to produce CMT within the phase plane of the invariant pair,
allowing the mean Lagrangian dynamics of invariants of the VGT to be analysed.
These trajectories are used to examine the physics of the Lagrangian evolution of the
VGT.

2. Theoretical background
2.1. Invariants of the velocity gradient tensor

Comprehensive background material pertaining to the topological methodology can
be found in Chong et al. (1990), Chen et al. (1990), Cantwell (1992), Soria et al.
(1994), Blackburn, Mansour & Cantwell (1996) among others. Only a brief summary
of the definitions and the physical meanings of the invariants will be given here.

The VGT Aij = ∂ui/∂xj has the following characteristic equation:

λ3
i + PAλ

2
i + QAλi + RA = 0, (1)

where λi are the eigenvalues of Aij and PA, QA and RA are the first, second and third
tensor invariants respectively. For incompressible flows, the invariants are given by
the following expressions:

PA = −Aii = 0, (2)

QA = − 1
2
AijAji, (3)

and

RA = − 1
3
AijAjkAki. (4)

The local topology is only dependent on the values of QA and RA. Figure 1 shows
the two-dimensional (RA, QA)-plane indicating the regions where the four possible
non-degenerate local flow topologies (stable-focus/stretching (SF/S), unstable-focus/
contracting (UF/C), stable-node/saddle/saddle (SN/S/S) and unstable-node/saddle/
saddle (UN/S/S)) in incompressible flows can exist. The tent-like curve is the DA = 0
line where DA is the discriminant of Aij given by

DA = 27
4
R2
A + Q3

A. (5)
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Figure 1. Non-degenerate local topologies for incompressible flows.

Aij can be split into a symmetric and a skew-symmetric component,

Aij = Sij +Wij, (6)

where Sij is the symmetric rate-of-strain tensor and Wij is the skew-symmetric rate-
of-rotation tensor.

In a similar fashion to the definition of the three invariants of Aij , three corre-
sponding invariants of Sij , (PS , QS , RS ), and the three corresponding invariants of
Wij , (PW , QW , RW ), are defined by their respective characteristic equations. Note that
PS = PW = 0 and RW = 0. QS is negative definite while QW is positive definite. If α1,
α2 and α3 are the eigenvalues of Sij , ordered such that α1 6 α2 6 α3, then

sgn(RS ) = sgn(α2), (7)

where α2 is the intermediate principal rate of strain.
It is sometimes convenient to describe observed phenomena in terms of the kine-
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matic vorticity number introduced by Truesdell (1954) and defined as

K =

(
QW

−QS
)1/2

. (8)

This quantity is a local measure of the ratio of the rotational strength to the rate
of irrotational stretching of a fluid element. If K = ∞, then the fluid particle
is undergoing solid-body rotation, while fluid particles that are subjected only to
irrotational stretching have a local value of K = 0.

The stretching term in the enstrophy density transport equation is related to the
third invariant of the rate-of-strain tensor and the VGT by the following equation:

ωiSijωj = 4(RS − RA). (9)

The rate at which the vorticity is stretched or contracted, Σ, can be expressed in terms
of the invariants RA, RS and QW as

Σ =
ωiSijωj

ωkωk
=
RS − RA
QW

. (10)

2.2. Development of the evolution equations of the invariants

In this section, evolution equations required in the computation of the CMT are
developed. Following Cantwell (1992), the evolution equation for Aij is easily obtained
by differentiating the incompressible Navier–Stokes equations with respect to xj ,
resulting in

DAij
Dt

+ AikAkj − (AkmAmk)
δij

3
= Hij, (11)

where

Hij = −
(

∂2p

∂xi∂xj
− ∂2p

∂xk∂xk

δij

3

)
+ ν

∂2Aij

∂xk∂xk

= −
(

∂2p

∂xi∂xj
− 2QA

3
δij

)
+ ν

∂2Aij

∂xk∂xk
. (12)

Hij acts like a forcing term in the evolution equation of Aij .
Using the definitions of QA and RA the evolution equations for QA and RA are

derived using (11) as

DQA
Dt

= −3RA − AikHki (13)

and
DRA
Dt

= 2
3
Q2
A − AinAnmHmi. (14)

The evolution equations for QS and RS are given by

DQS
Dt

= −3RS + (RS − RA)− SijHS
ji (15)

and
DRS
Dt

= 2
3
Q2
S + 2

3
QS (QA − QS ) + 1

4
E − SijSjkHS

ki, (16)

where HS
ij and HW

ij are defined as the symmetric and skew-symmetric parts of Hij , i.e.

HS
ij ≡ 1

2
(Hij +Hji) = −

(
∂2p

∂xi∂xj
− 2QA

3
δij

)
+ ν∇2Sij (17)
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and

HW
ij ≡ 1

2
(Hij −Hji) = ν∇2Wij, (18)

respectively.
E is the square of the vorticity stretching vector given by

E =
(
Sijωj

)
(Sikωk) . (19)

The Aij and Hij terms in (13) to (16) can be calculated using data from DNS
simulations and hence, DQA/Dt, DRA/Dt, DQS/Dt and DRS/Dt are known on every
point in the computational grid. The evolution equation for DQW/Dt can be deduced
using the kinematic relationship

QW = QA − QS , (20)

which gives

DQW
Dt

= 2(RS − RA) +WijH
W
ji . (21)

The evolution equation for E follows from its definition, i.e.

DE
Dt

= − 16
3

(RS − RA)QA + 2Sijωj
(
HS
il ωl + Sikω

H
k

)
, (22)

where ωH
k refers to the vector derivable from the skew-symmetric part of Hil , i.e.

ωH
i ≡ εijkHW

kj = ν∇2ωi. (23)

The quotient rule is used to develop the evolution equation for Σ which is given as

DΣ

Dt
=

1

Q2
W

(2QWQ
2
S + 2

3
QSQ

2
W − 2

3
Q2
AQW − 2(RS − RA)2 + 1

4
EQW

−HS
ijSjlSliQW + AinHnmHmiQW −HijWij(RS − RA)). (24)

Although E is not an invariant of a tensor, it is a Galilean invariant quantity like
the tensor invariants – thus, for brevity all variables which are Galilean invariant will
also be referred to simply as invariant quantities.

2.2.1. The effect of Hij on the evolution of invariant quantities

The properties of Hij need to be understood in order to develop a mathematical
model for the evolution of invariant quantities described in the previous section. An
initial attempt to study the properties of Hij via its invariants for the case of decaying
isotropic turbulence and a temporally evolving plane wake has been undertaken by
Cheng (1996). However, only joint PDFs were computed in this study and hence only
the kinematic effect of Hij was studied.

In order to develop a full dynamical model for Hij , there is a need to study
and understand the full effect of the Hij tensor on the Lagrangian dynamics of the
invariants. This type of study requires well-resolved data to evaluate all the right-
hand-side terms in the evolution equations. Accurate spatial derivatives of the velocity
and pressure field are needed. For this reason, spectral simulation of homogeneous
isotropic turbulence seems the most appropriate flow to provide the data. The data for
both decaying and forced homogeneous turbulence were computed using the spectral
code described in the next section.
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3. Details of the direct numerical simulation
The data for this investigation were obtained from simulations of forced isotropic

turbulence. The forcing was achieved by adding energy into the lower-wavenumber
components to ensure that the volume-averaged kinetic energy does not decay. A
variety of methods (forcing schemes) have been put forward by Siggia & Patterson
(1978), Eswaran & Pope (1988), Vincent & Meneguzzi (1991), Jiménez et al. (1993)
and Sullivan, Mahalingam & Kerr (1994) to inject energy into the lower-wavenumber
components. The forcing scheme used in this work is similar to that introduced by
Eswaran & Pope (1988) where energy is injected into the lower-wavenumber Fourier
modes of the Navier–Stokes equations using the Uhlenbeck–Ornstein statistical pro-
cess.

The Navier–Stokes equations in Fourier space are given as

d

dt
û(k) = â(k), (25)

where â(k) is the Fourier transform of the sum of the convection, viscous and pressure
gradient terms in the Navier–Stokes equations. To ensure that the volume-averaged
kinetic energy does not decay with time, a forcing acceleration term is added to the
lower wavenumber components of (25), hence

d

dt
û(k) = â(k) + âF (k). (26)

Here âF (k) is the forcing term which is non-zero only for wavenumbers k within the
band 0 < k 6 KF where k = |k| and KF is the cut-off wavenumber. The forcing

acceleration âF (k) is based on the Uhlenbeck–Ornstein statistical process with the
real and imaginary parts of each component of âF (k) generated independently. Thus,
at each wavenumber there are six independent Uhlenbeck–Ornstein processes. Each
of these has a variance of σ2 and a time scale TL. These six processes are combined to

form the complex forcing vector b̂(k) (see Yeung et al. 1988). In general b̂(k) does not

satisfy continuity, thus continuity must be imposed by projecting b̂(k) onto a plane
that is normal to the wavevector k, i.e.

âF (k) = b̂(k)− kk · b̂(k)

k · k , (27)

This provides the required forcing acceleration âF (k) which also satisfies the continuity
constraint, i.e. k · âF (k) = 0.

The following statistical quantities were calculated and stored at every time step
during the simulation:

l =
π

2u2
rms

∫ kmax

0

E(k)

k
dk, the integral length scale where urms is the rms velocity;

λ =

 〈
u2
α

〉〈(
∂uα/∂xα

)2
〉
1/2

=

(
5 〈uiui〉
〈ωiωi〉

)1/2

, the Taylor microscale;

η =
(
ν3/ε

)1/4
, the Kolmogorov microscale;

the volume− averaged kinetic energy of the flow;

the volume− averaged dissipation of the flow;

F3(uα), the skewness of any one velocity component;
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Figure 2. Time evolution of mean kinetic energy and ε in the simulation of forced isotropic
turbulence at Reλ = 41.5.

F4(uα), the kurtosis of any one velocity component;

F3(ωα), the skewness of any one component of vorticity;

F4(ωα), the kurtosis of any one component of vorticity.

The operator Fn is defined as

Fn(T ) = (−1)n
〈Tn〉
〈T 2〉n/2 . (28)

The temporal evolution of some of these quantities for the case at Reλ = 41.5 is shown
in figures 2 and 3. Figure 2 shows the evolution of the volume-averaged kinetic energy
and dissipation with time non-dimensionalized by the eddy-turnover time,

τeddy = l/urms. (29)

The volume-averaged kinetic energy and dissipation pass through an initial transient
state but eventually reach a steady state where they oscillate about some mean
value. The time evolution of the skewness and kurtosis of uα and ωα are shown in
figure 3. The kurtosis of uα remains approximately constant at 2.8 while the kurtosis
of ωα increases and subsequently oscillates about a mean value. This result agrees
well with the kurtosis value of between 2.9 and 3.0 reported by Batchelor (1960)
for experimental data of grid turbulence. The skewness for both uα and ωα remain
approximately zero throughout the simulation, which also agrees with the reported
value of zero by Batchelor (1960) for experimental grid turbulence data.

Further pertinent parameters of the three simulations which are used to provide
the data for this investigation are tabulated in table 1. All simulations were continued
for a sufficiently long time for the instantaneous integral characteristics to become
statistically steady, which typically took several large-eddy turnover times. The data
shown in table 1 are ensemble averages, i.e. space- and time-averaged quantities. The
calculation of time averages of the data was only undertaken after the simulations
had reached a statistically steady state. Table 1 shows that uα has a skewness value of
approximately zero and a flatness value of approximately 2.8 for all three simulations
and is in good agreement with experimental data (Batchelor 1960).
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Figure 3. Time evolution of skewness and kurtosis of uα and ωα for the simulation of forced
isotropic turbulence at Reλ = 41.5.

Reλ 41.5 48.2 70.9

L 2π 2π 2π
ν 0.025 0.025 0.025
k0 1 1 1
N 64 96 128

KF 2
√

2 2
√

2 2
√

2
ε 3.6 8.33 57.5
urms 1.8 2.4 4.7
l 1.1 1.0 1.0
λ 0.58 0.51 0.38
η 0.046 0.037 0.023
tη 0.083 0.055 0.021
∆t/tη 0.012 0.009 0.024
kmaxη 1.7 2.0 1.7
l/L 0.18 0.17 0.17
F3(uα) 0.0 0.0 0.0
F4(uα) 2.8 2.9 2.8
F3(ωα) 0.0 0.0 0.0
F4(ωα) 4.9 5.3 6.2
Sε 0.521 0.523 0.505
εl/u3

rms 0.65 0.61 0.53

Table 1. Parameters of simulations and calculated Eulerian flow variables.

To ensure good spatial resolution kmaxη must be greater than 1, where η is the
Kolmogorov microscale representing the dissipation scale and hence the smallest
significant turbulence scale, while kmax is the maximum wavenumber in the simulation,
which indicates the smallest scale that can be resolved in the simulation, which is of
the order 1/kmax. Table 1 indicates the respective values for (kmaxη) for all simulation
cases presented here. The computational domain of the simulation is periodic, hence
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Figure 4. Three-dimensional energy spectra for the three different Reλ cases used in this paper.
The horizontal region displays the inertial range in each case.

to ensure that all significant length scales in the flow are not contaminated by
the periodicity of the computational domain the ratio l/L should be as small as
possible. For the simulations reported here, l/L < 0.18. The Kolmogorov time scale
defined by

tη = (ν/ε)1/2, (30)

is representative of the smallest time scale in turbulent flows. Hence to ensure that tη
is well resolved, the ratio ∆t/tη must be small. Table 1 shows that for all simulations
∆t/tη < 0.025.

Three-dimensional shell-averaged energy spectra for the three cases providing the
data base for this study are presented in figure 4. All cases show a short inertial range
with a power decay of approximately k−5/3. It is clearest in the highest Reλ case used
for this investigation. There is a satisfactory collapse of the spectra in the dissipation
range, although, as observed by other investigators (see Jiménez et al. 1993) the
dissipation spectra at the higher Reλ appear fuller. The Kolmogorov constant in the
inertial range is found to be approximately equal to 2.0 and is in good agreement
with the value found by others (see Jiménez et al. 1993).

4. Conditional mean rate of change of invariants.
In order to study the mean temporal evolution of the invariants it is necessary to

consider the temporal evolution for different ensembles of fluid particles with a given
set of specified initial conditions. This process requires accurate simultaneous particle
tracking of a large number of particles during the turbulence simulation to acquire
sufficient statistical data. This type of computation requires a large amount of CPU
time which was not available to the authors. An alternative approach is to consider
the mean temporal rate of change of the velocity gradient invariants which can be
determined using a conditional average technique.
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The conditional mean rate of change of an invariant pair (X,Y ) is numerically
computed using the following discrete formulae:

Ẋ(X,Y ) ≡
〈

DX

Dt

∣∣∣∣ (X = X0, Y = Y0)

〉
=

1

NXY

X0+∆X/2∑
X0−∆X/2

Y0+∆Y /2∑
Y0−∆Y /2

DX

Dt
(X,Y ), (31)

Ẏ (X,Y ) ≡
〈

DY

Dt

∣∣∣∣ (X = X0, Y = Y0)

〉
=

1

NXY

X0+∆X/2∑
X0−∆X/2

Y0+∆Y /2∑
Y0−∆Y /2

DY

Dt
(X,Y ), (32)

where ∆X is the bin width in the X variable, ∆Y is the bin width in the Y variable,
and NXY is number of samples in the domain of X0 − ∆X/2 < X < X0 + ∆X/2
and Y0 − ∆Y /2 < Y < Y0 + ∆Y /2. The 〈 〉 brackets represent the ensemble mean of
DX/Dt or DY /Dt at (X = X0, Y = Y0).

An illustration of the computational technique and issues relating to statistical
convergence are presented for RA and QA. Corresponding computations and the
discussion of convergence issues for all other invariant pairs are similar. Since all
terms on the right hand-sides of (13) and (14) can be calculated at every point in the
flow field, both DQA/Dt and DRA/Dt are calculable at every point in the flow field.
In order to calculate the average values of DQA/Dt and DRA/Dt conditioned upon
RA and QA, the (RA, QA) phase plane is firstly divided into NR×NQ equally sized bins,
where NR is the number of bins in the RA coordinate and NQ is the number of bins in
the QA coordinate. The average values of DQA/Dt and DRA/Dt are then computed
at every bin in the (RA, QA) phase plane using (31) and (32) with RA replacing X and
QA replacing Y . The conditional mean values of DRA/Dt and DQA/Dt are therefore
known for every bin in the (RA, QA) phase plane and represent a conditional mean
vector field (ṘA(RA, QA), Q̇A(RA, QA)) in the (RA, QA) phase plane.

The conditional mean trajectories (CMT) in the (RA, QA) phase plane are computed
using the conditional mean vector field. The same procedure is applied to calculate the
conditional vector field and corresponding CMT for the (QW ,−QS ), (RS , QS ), (Σ,QW )
and (Σ,−QS ) phase planes. The convergence of the conditional mean vector fields
of the (RA, QA) invariants was investigated to ensure their statistical convergence.
Figures 5(a) and 5(b) show Q̇A(RA, QA) and Ṙ(RA, QA) evaluated at point P (shown
in figure 6) as a function of the number of samples. These two figures show that
convergence of the conditional means is achieved if more than 300 samples per bin
are used.

The resolution of the CMT is dependent on the bin size. As expected, there is an
improvement in the resolution of the computed CMT for smaller bin size. However,
if the bin size is too small there is insufficient sample data available in a given bin
for the statistics to converge. This problem is illustrated in figure 7(a) which shows
the function Q̇A(QA = 0, RA) computed using different bin sizes. For large bin sizes,
the function Q̇A(QA = 0, RA) is poorly approximated. As the bin size is decreased, the
function Q̇A(QA = 0, RA) is better approximated as demonstrated by the collapse of
the data in the range −2 < RA < 2 for bin sizes 0.8×0.8, 0.4×0.4 and 0.2×0.2. Smaller

bin sizes result in wild oscillations in Q̇A(QA = 0, RA) for large values of RA/〈QW 〉3/2.
This is a direct result of a lack of samples in the bins. A similar behaviour is found
for Q̇A(QA, RA = 0) as shown in figure 7(b). This plot shows convergence for bin sizes
0.8 × 0.8, 0.4 × 0.4 and 0.2 × 0.2 as indicated by the collapse of the Q̇A(QA, RA = 0)
data in the range −2 < (QA/〈QW 〉) < 6.
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Figure 5. The convergence of the statistics of the conditional means (a) 〈DQA/Dt|RA, QA〉,
and (b) 〈DRA/Dt|RA, QA〉, at point P shown in figure 6.

5. Results and discussion
5.1. Joint PDFs of invariants and related data

In this section, joint PDFs are utilized to investigate the structure of the invariants
and the geometry of turbulent motions in isotropic turbulence. Unless otherwise
stated, all results presented in this paper correspond to DNS data of forced isotropic
turbulence at Reλ = 70.9. The joint PDF of RA vs. QA shown in figure 8(a) indicates
that most of the flow domain has small gradients, confirmed by the maximum of the
joint PDF lying around the origin. The different contour levels have a self-similar
‘pear’ shape, indicating that most data points in the flow have a local topology which
is either SF/S or UN/S/S. There is a tendency for the data to ‘hug’ the DA = 0 line
when the local topology of the flow is UN/S/S. Similar results were found in the
study of the plane mixing layer by Soria et al. (1994), the channel flow by Blackburn
et al. (1996) and the turbulent boundary layer by Chong et al. (1998). One of the
most interesting features to be noted is that although the large-scale motions of these
simulations are different due to the different global flow geometries, the joint PDFs
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Figure 6. The point P where the statistical convergence of 〈DQA/Dt|RA, QA〉 and
〈DRA/Dt|QA, RA〉 were checked in figure 5.

of RA vs. QA are similar for all these flows. This suggests a kind of universality in the
(RA, QA) invariant space for all motions of turbulence.

Figure 8(b) shows the joint PDF of QW vs. −QS . The physical meaning of different
regions in the joint PDF of QW vs. −QS can be found in Perry & Chong (1994). A
self-similar shape of the contour levels is also observed here. The joint PDF is slightly
skewed towards the axis, with high QW indicating that the highest local value of −QS
is smaller than the highest local value of QW in the flow field. This suggests that flow
regions with high QW resemble solid-body rotation with little energy dissipation and
hence should be relatively long lived. In fact, for all times in the simulations, it was
observed that the maximum value of QW is about at least a factor of 2 to 3 higher
than the maximum value of −QS . This result is in agreement with that found by
Yeung & Pope (1989) in their isotropic turbulence data.

Figure 8(c) shows the joint PDF of RS vs. QS . Since Sij is a symmetric tensor, the
joint PDF for the invariants RS vs. QS can only lie below the null discriminant curve,
i.e.

DS = (27/4)R2
S + Q3

S = 0. (33)

The contour lines of this joint PDF also have a self-similar shape with a strong
preference for RS > 0, indicating that most data points in the flow have α2 > 0.
A more detailed analysis of all three data bases of isotropic turbulence reveals that
approximately 80% of all points in the flow have α2 > 0. Physically, this means that
most flow regions are stretched in two orthogonal directions and contracted in the
third. Figure 8(c) also shows that data points in the flow which have high values of
−QS also have positive α2.

The joint PDFs for Σ vs. −QS and Σ vs. QW are shown in figures 8(d) and 8(e)
respectively. It is evident from these two figures that most points in the flow have
positive values of Σ, i.e. the vorticity vectors are being stretched. The highest values
of −QS and QW can be seen to be associated with positive values of Σ. In figure 8(e),
high stretching rates, Σ, are associated with regions where QW is small and not with
regions of high QW . This was interpreted by Jiménez et al. (1993) to imply that there
is little evidence of self-stretching by structures in the flow field which have large
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values of QW (the dynamics will be discussed in §5.2). The joint PDF of Σ vs. −QS
shown in figure 8(d) has a small base growing wider for larger values of −QS . This
indicates that the largest |Σ| in the flow is associated with regions of moderate to
high −QS .

Figure 9 shows the significance of regions with positive DA. Three curves are
plotted on this graph showing: (i) the amount of the flow volume with DA > DA
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Figure 9. Normalized conditional volume-integrated data of: (i) flow volume; (ii) −QS ; (iii) QW .

The condition for the integration is that DA > DA (given); the normalized DA (given)/〈QW 〉3 is
the independent variable in this plot. The normalization factor for the conditional integrals is the
respective unconditional integral over the entire flow volume.

(given) relative to the total flow volume; (ii) how much of the integrated −QS is given
by regions with DA > DA (given); and (iii) how much of the integrated QW is given by
regions with DA > DA (given). These data show that regions with DA > 0 account for
approximately 64% of the total flow volume. As expected almost all of the integrated
QW is found within the regions with DA > 0, i.e. approximately 85%. What is perhaps
surprising is that focal regions also account for more than half of the total dissipation
of mechanical energy, i.e. focal regions contain approximately 54% of the integrated
−QS . It is interesting to note that with respect to QW and −QS , there is little change
in the integrals once DA 6 10−2 〈QW 〉3. This suggests that most of the dynamically

important focal motions in this flow volume have DA > 0.01 〈QW 〉3 and these regions
are also responsible for dissipating approximately 50% of the total kinetic energy.

The relationships of the conditional mean QW and −QS as a function of DA are
shown in figure 10. This plot indicates that the relationship between the mean QW
and DA is approximated well by a 1/3 power law for DA/〈QW 〉3 > 1. This result can
be deduced from (5) for large values of DA, provided that the following conditions
are satisfied:

QS

QW
� 1

and

|RA| � (
4
27
Q3
W

)1/2
.

The conditional mean dissipation of kinetic energy represented by 〈−QS |DA〉 is also
found to increase with DA as shown in figure 10, but at a lower rate than 〈QW |DA〉.
The point to note here is that 〈−QS |DA〉 follows a 1/7 power law quite accurately for
the entire positive DA range of values. The explanation for this result is not clear at
this stage.

The focal structures in the flow are visualized in figure 11 using an iso-surface
value of DA = 125 〈QW 〉3. From the results presented in figure 10 it is deduced that
these structures have a mean QW value of 6 〈QW 〉, which is equivalent to ω = 2.4ωrms.
Hence, these focal structures do not fall into the ‘intense vorticity or worms’ category
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of Jiménez et al. (1993), but as can be clearly observed from the visualization in
figure 11 they form quite distinct and compact coherent structures (or worms) .

The topological classification of the flow provides additional geometric information
on the structure of these worms which are only composed of focal regions and
henceforth will be referred to as focal structures. The SF/S regions of the focal
structures are in general elongated and compact and occupy most of the focal
volume. The UF/C regions resemble ‘blobs’ and are found: (i) predominantly at one
of the ends of the focal structures; (ii) in regions where the focal structure bends; or
(iii) in focal regions joining two regions of SF/S topology. Reducing the iso-surface
DA level appears to increase the cross-sectional size of the SF/S regions and the
blobbiness of the UF/C regions, but not the general structure.

5.2. Conditional mean time rate of change of invariant vector fields and mean
trajectories

The joint PDFs presented in the previous section only give a static instantaneous
picture of the correlation between different invariant quantities. On the other hand,
the conditional mean time rate of change of the invariant vector fields and the CMT
introduced in §4 give a representation of the mean Lagrangian evolution of these
invariants, albeit only as a conditional mean. In this section the conditional mean
time rate of change of the invariants of Aij , Sij and Wij and their corresponding CMT
in their two-dimensional invariant phase planes are presented.

To illustrate the dynamical effects of Hij , the CMT are calculated with and without
Hij contributions. In order to ensure that the CMT computed in this section are not
dependent on the random forcing at the large scales, similar plots have been produced
and analysed for the case of decaying isotropic turbulence. Qualitatively, the CMT
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computed from these data are similar to the plots shown here for forced isotropic
turbulence. Hence, all discussion in this section is independent of the large-scale
forcing scheme used to sustain the turbulence.

5.2.1. The (RA, QA) phase plane

Figure 12 shows the conditional mean vector field (Q̇A(RA, QA), ṘA(RA, QA)), in
the (RA, QA) invariant phase plane. In the neighbourhood of the origin along the
null discriminant curve for RA > 0, all vectors have very small magnitude. This
suggests that the mean time rates of change of QA and RA are quite small in flow
regions which have small gradients (i.e. in regions with small DA values). It is clearly
observable that the directions of the mean vectors in the (RA, QA) phase plane where

RA/〈QW 〉3/2 > 5 and DA < 0 are not well defined, whereas the directions of the
(Q̇A(RA, QA), ṘA(RA, QA) vectors are well defined for DA > 0 and where the value of
the corresponding joint PDF is greater than 10−4. The CMT in this invariant phase
plane are therefore only calculated in regions where the mean vectors are well defined.

Figure 13(a) shows the CMT in the (RA, QA) invariant phase plane. The trajectories
move in a clockwise fashion spiralling towards the origin. This indicates that in the
mean, the local topology of fluid particles will change in a cyclical manner from
UN/S/S to SN/S/S to SF/S to UF/C. Trajectories started with high values of QA
and RA go through the same sequence of topological evolution (UN/S/S → SN/S/
S → SF/S → UF/C) a few times before finally spiralling into the origin. This is
in stark contrast to the trajectories predicted using the restricted Euler model (see
Cantwell 1992).

Since decreasing values of QA and RA imply decreasing values of velocity gradients,
this observation suggests that in the mean, fluid particles move from regions dom-
inated by small-scale motions to regions where the large-scale motion is dominant.
Some evidence that the CMT are representative of actual Lagrangian trajectories in
the (RA, QA) phase plane was provided in a study of wall-bounded flows by Chong
et al. (1998), where it was shown that fluid particles with initial local topology SF/S
will generally evolve towards the origin of the (RA, QA) invariant phase plane, while
the local topology changes from SF/S to UF/C.

Since the CMT have this clockwise spiralling motion which crosses the DA = 0 curve
several times, Martin et al. (1998) hypothesized that this spiralling motion might be
periodic. Their investigation showed that the cyclical evolution in the (RA, QA) phase
plane has a repeatable period equal to T0 ≈ 30tη = 3τeddy , where tη is the Kolmogorov
time scale and τeddy is the eddy turnover time. It is worth noting that T0 compares
well with the Lagrangian integral time scale estimated by Corrsin (1963).

Conditional mean trajectories in the (RA, QA) phase plane have also been calculated
assuming Hij = 0 to investigate its effect on the conditional evolution. These CMT
are shown in figure 13(b). Integration was only carried out where the mean vector
field is well defined. Comparing figure 13(a) with figure 13(b) shows that in regions
where the local topology is UF/C, terms involving Hij have a dissipative role. The
CMT in these regions have a tendency to go towards the origin of the (RA, QA) phase
plane. In regions where DA < 0, figure 13(b) shows that the CMT go from left to
right whereas figure 13(a) shows the CMT going from right to left. Hence, the terms
involving the Hij tensor alters the sign of DRA/Dt in non-focal regions of the flow
field and thus has a marked effect on the evolution of the invariant.

Figure 14 shows vortex lines which are coloured according to the local topology
demonstrating that regions where the vortex lines are well-organized have SF/S
topology, while regions which are not so well organized have a UF/C type of local
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Figure 11. Iso-surface of the discriminant, DA, used to visualize focal structures. The yellow
iso-surface represents flow regions with SF/S topology while the blue outlines of the iso-surface
show UF/C topology flow regions. The iso-surfaces of both SF/S and UF/C correspond to

DA = 125 〈QW 〉3 and the entire flow domain of the 1283 simulation at Reλ = 70.9 is shown.
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Figure 14. Vortex lines through a plane (coloured in white) of the flow field where the value of
QW/〈QW 〉 is high for DNS at Reλ = 70.9. The vortex lines are coloured according to the local
topology.
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Figure 12. Conditional mean vectors of Q̇A and ṘA computed from data of forced isotropic
turbulence at Reλ = 70.9.

topology. This is also clearly shown in figure 11 where the yellow iso-surfaces of DA
represent regions with SF/S topology while the blue iso-surfaces represent regions
with UF/C topology.

Figure 15 shows the detailed focal structure in a quarter of the total flow volume.
Figure 15(a, b) shows yellow SF/S vorticity vectors with DA/〈QW 〉3 > 100 and blue

UF/C vorticity vectors with DA/〈QW 〉3 > 50. Vortex lines through a single focal
structure have been included to show their compact form and well organized nature
in SF/S regions. The vortex lines have a tendency to diverge in UF/C regions.

Figure 15(c, d) shows corresponding SF/S surfaces with an iso-level of DA/〈QW 〉3 =

300 and UF/C surfaces with and iso-level of DA/〈QW 〉3 = 20; these iso-surfaces
have been drawn with some transparency to show where the vortex lines lie inside
or outside the focal structure. Figure 15(e) shows that the SF/S component of a
focal structure is predominantly compact and elongated, while figure 15(f ) shows that
UF/C regions envelop the SF/S structure like a sleeve or are predominantly blobby in
nature and located at the tip of well-defined tubular SF/S regions or in focal regions
containing kinks or bends.

A scenario for the mean evolution of fluid particles can be conjectured from the
behaviour of the CMT in relation to the focal structures in the flow field. A particle



Invariants of the velocity-gradient tensor 161

15

–15
–15 –10 –5 0 5 10 15

–10

–5

0

5

10

RA/-QW.3/2

Q
A
/-

Q
W
.

(a)

15

–15
–15 –10 –5 0 5 10 15

–10

–5

0

5

10

Q
A
/-

Q
W
.

(b)

DA = 0

DA = 0

Figure 13. Conditional mean trajectories of the invariants QA and RA computed using (a) data
of forced isotropic turbulence at Reλ = 70.9, and (b) data of homogeneous isotropic turbulence
assuming Hij = 0.

in the vicinity of a coherent SF/S structure, in a location just outside the core of the
coherent structure where the local topology is probably UN/S/S, will be sucked into
the core of the structure which is essentially a low-pressure region. The local topology
(as seen by an observer moving with the particle) changes from UN/S/S via SN/S/S
to SF/S. The particle then moves along the core of the structures to regions where
the focal structure loses its compact nature due to contraction of the focal structure
and the local topology changes to UF/C. Contraction of the focal structure leads to
a decrease in the magnitude of the velocity gradients and thus a decrease in the local
values of QA and RA and hence the spiralling of the CMT in the (RA, QA) phase space
towards the origin.
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Figure 15. Conditional vorticity vector fields and iso-contours of DA for SF/S and UF/C flow
topologies for 0.25 of the computed flow domain. Vortex lines through the core of a SF/S region
containing the highest values of DA are also indicated. (a, b) Different views of the conditional

vorticity vector field: the yellow vectors indicate SF/S regions with DA > 100 〈QW 〉3, whereas the

blue vectors indicate UF/C regions with DA > 50 〈QW 〉3; the red vortex lines are only computed
for one of the dominant structures in this flow region. (c, d) The corresponding views of (a) and
(b) with the focal structures identified using correspondingly coloured iso-surfaces of DA: the SF/S

iso-surface is shown for DA > 300 〈QW 〉3 while the UF/C iso-surfaces are shown for DA > 20 〈QW 〉3;
the iso-surfaces have been drawn with transparency to show where the vortex lines lie inside these
focal structures. (e,f ) The same iso-surfaces as (a) and (b) with (e) only showing the SF/S structures
and (f ) only showing the UF/C structures. The vortex lines are shown for the same region in all
the focal visualizations.
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Figure 16. Conditional mean time rate of change vectors of RS and QS computed using data of
forced isotropic turbulence at Reλ = 70.9.

This is a very simplistic interpretation which only applies in the mean. It is at this
point worth recalling that the conditional averaging has masked the fine detail of the
topological evolution of individual fluid particles and replaced it with the average
evolution of an ensemble of many particles all of which started with the same initial
value for RA and QA.

5.2.2. The (RS , QS ) phase plane

Conditional mean vectors in the (RS , QS ) phase plane are shown in figure 16.
Similarly to the (RA, QA) phase plane, the magnitude of the vectors close to the origin
is smaller than the magnitude of the vectors away from the origin indicating that the
magnitude of ṘS (RS , QS ) and Q̇S (RS , QS ) is small when the magnitude of both RS and
QS is small. Figure 17 shows the CMT emerging from what appears to be an unstable
focus in the (RS , QS ) phase plane. Some of the CMT go towards the origin and some
of them diverge to regions with large values of RS and −QS . The location of the
unstable focus is more clearly illustrated in figure 18(a) which shows an enlarged view
close to the origin in the (RS , QS ) phase plane. The location of the unstable focus

is shown to be at approximately (RS/〈QW 〉3/2, QS/〈QW 〉) ' (1,−2) for the data at
Reλ = 48.2. A corresponding close up view of the unstable focus computed using the
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Figure 17. The CMT of the invariants RS and QS computed from data of forced isotropic
turbulence at Reλ = 70.9 corresponding to vector field shown in figure 16.

Reλ = 70.9 simulation data is shown in figure 18(b) where the location of the unstable

focus is shown to be at (RS/〈QW 〉3/2, QS/〈QW 〉) ' (1,−3), indicating that there may
be a trend for the location of this unstable focus to move to larger −QS/〈QW 〉 values
at higher Reλ.

Closer observation of figure 18 reveals that some of the trajectories close to the
origin of the (RS , QS ) phase plane appear to go above the DS = 0 line. This error was
traced to the discrete nature and finite resolution used to represent the conditional
mean vector fields. CMT computed with smaller bins allow all trajectories to head
exactly to the origin of this plane, but statistical convergence in the computations of
the conditional mean time rate of change of RS and QS is then not guaranteed for
large values of RS and QS .

The effect of the terms containing the Hij tensor was also investigated by calculating
the corresponding CMT with Hij = 0. These results are shown in figure 19. The CMT
in this figure travel from left to right in the (RS , QS ) phase plane. For large values of
−QS , the CMT are similar to the CMT in figure 17 indicating that the terms involving
Hij have a negligible effect on the CMT structure and hence the mean evolution of
RS and QS for large values of −QS . However, for small values of −QS the terms
involving Hij are important and have the effect of dragging the CMT towards the
origin of the (RS , QS ) phase plane.

5.2.3. The (QW ,−QS ) phase plane

Figure 20 shows the conditional mean time rate of change vector field in the (QW ,
−QS ) phase plane. Vectors close to the origin are small, indicating that Q̇W (QW ,
−QS ) and −Q̇S (QW , −QS ) have small values. The corresponding CMT plot is shown
in figure 21(a), illustrating that some trajectories start with low QW and low to
moderate values of −QS and move to regions dominated by rotational motions (high
value of K) at slightly increasing levels of −QS . These trajectories are found to then
return to the origin via regions with lower values of −QS . There are also trajectories
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Figure 18. A closer view of the unstable focus closer to the origin in the (RS , QS ) phase plane for
(a) Reλ = 48.2, and (b) Reλ = 70.9.

that appear to move simultaneously to large values of QW and −QS and this is
especially evident in regions where K is small. An interesting observation is that for
small values of K, −Q̇S (QW , −QS ) is found to be positive indicating an increase in
the mean value of −QS . In contrast, regions with large values of K have negative
values of Q̇W (QW , −QS ), indicating that there is a decrease in the mean value of
QW .

Conditional mean trajectories have also been computed assuming that Hij = 0 and
these are shown in figure 21(b). The CMT in regions where QW is low have the same
trends as those found in figure 21(a) indicating that in these regions the effect of
the terms involving Hij is not so important in the mean evolution of QW and −QS .
However, the CMT in figures 21(a) and 21(b) look quite different in regions where
K is high. Hence, terms involving Hij play an important role here. By comparing
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Figure 19. The CMT of the invariants RS and QS computed using data of forced isotropic
turbulence at Reλ = 48.2 assuming that Hij = 0.

figure 21(a) with 21(b) it is easily seen that the mean effects of the terms involving
Hij at high values of K is to force the CMT to go towards the origin of the (QW ,
−QS ) phase plane.

5.2.4. The (Σ,QW ) phase plane

The CMT in the (Σ,QW ) phase plane are shown in figure 22(a). Figure 22(b)
is a closer view of the CMT in the neighbourhood of the origin of the (Σ,QW )
phase plane. The trajectories travel in an anti-clockwise fashion, indicating that
positive values of Σ are correlated with increasing values of QW and negative val-
ues of Σ are correlated with decreasing values of QW . This is expected because
the local stretching of enstrophy is associated with positive values of Σ whereas
the contracting of enstrophy is associated with negative values of Σ. Trajectories

closer to the origin will spiral into the point (Σ/〈QW 〉1/2, QW/〈QW 〉) ' (0.25, 0.75).
Trajectories that are started further away from the origin travel in an anti-clockwise
direction to high values of QW , reaching a maximum QW . Viscous diffusion and
vorticity contraction effects subsequently reduce QW to a small and possibly zero
value.

Some further interesting results can be deduced from the conditional evolution of
QW and Σ shown in figure 22 by reference to the governing equation for QW ,

DQW
Dt

= 2Σ QW + 1
2
νωi

∂2ωi

∂xj∂xj

= 2Σ QW −WikH
W
ki

= 2Σ QW + ν
∂2QW

∂xj∂xj
− 1

2
ν
∂ωi

∂xj

∂ωi

∂xj
. (34)

The available data suggest that QW becomes zero as shown in figure 22. However,



Invariants of the velocity-gradient tensor 167

16

0 4 8 12 16 20

4

8

12

QW/-QW.

–Q
S
/-

Q
W
.

20

Figure 20. Conditional mean time rate of change vectors of −QS and QW computed using data of
forced isotropic turbulence at Reλ = 70.9.

this effect could be due to the finite number of data bins in the (Σ,QW ) phase plane.
Any conditional mean increase in QW requires a non-zero QW as indicated by (34),
and since figure 22(b) indicates what appears to be an increase of QW from a zero
base, one is led to the conclusion that QW decreases for Σ < 0 in the mean to a small
but non-zero value and keeps on decreasing while Σ starts to increase again turning
from vorticity contraction to vorticity stretching.

The CMT in figure 22(b) show that for small values of QW and for Σ > 0 there
is a conditional mean increase in QW due to vortex stretching with the conditional
mean time rate of change of Σ always negative for QW/〈QW 〉 > 1. Following a
given CMT for Σ > 0 from QW/〈QW 〉 ≈ 0, the maximum value of Σ is always
attained when Σ̇ = 0. As is evident from figure 22(b), QW/〈QW 〉 ≈ 0.7 whenever
Σ̇ ≈ 0.

In a similar fashion the maximum QW value following a given trajectory is reached
when Q̇W is zero. At this point (34) indicates that there is an exact balance between
the conditional mean vorticity stretching and viscous diffusion effects. These maxima
in QW for the CMT shown in figure 22(b) are always found to occur for Σ > 0.
This result indicates that the initial decrease in QW , once it has reached a maximum
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Figure 21. (a) The CMT of the invariants QW and −QS computed from data of forced isotropic
turbulence at Reλ = 70.9 shown in figure 20. (b) The corresponding CMT of the invariants QW and
−QS computed from data of forced isotropic turbulence at Reλ = 48.2 and assuming that Hij = 0.

value, is not due to vorticity contraction, but rather to viscous diffusion effects.
This point is clearly illustrated in both figures 22(a) and 22(b) by the fact that
Q̇W < 0 and Σ > 0 after the maximum QW value is reached, which by reference
to (34) implies that viscous effects must dominate over the vorticity stretching effect
in this region of the trajectory evolution. Once the trajectories cross the Σ = 0
line, then both vorticity contraction and viscous diffusion act together to reduce QW
further.

The maximum vorticity contraction rate is found to occur when Σ̇ = 0. The
CMT shown in figure 22(b) suggest that in this region the strain field changes in
such a way as to reduce vorticity contraction and ultimately reach a state where
vorticity stretching is again present. During this evolution of the strain field, QW is
found to continually decrease, albeit at a very small rate. This decrease of QW along
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Figure 22. (a) The CMT of the invariants Σ and QW computed from data of forced isotropic
turbulence at Reλ = 70.9. (b) A magnified view of the stable focus located at approximately

(Σ/〈QW 〉1/2, QW/〈QW 〉) = (0.25, 0.7).

a CMT is found to persist even though vorticity stretching is again present. This
negative conditional mean time rate of change of QW continues until a threshold

value of vorticity stretching represented by Σ/〈QW 〉1/2 ≈ 0.25 is reached. Only then
does one observe that Q̇W changes sign and QW begins to increase again along a
CMT. This effect is shown clearly in figure 23, where the conditional mean rate of
change of QW has been computed for the appropriate range of normalized stretching
rates. The zero conditional mean rate of change of QW is found to be given when

Σ ≈ 0.25 〈QW 〉1/2.
The cyclical nature of the CMT in the (Σ,QW ) phase plane has also been investi-

gated in some detail. The evolution of Q̇W and Σ̇ in this phase plane is found to be
self-similar if normalized by the maximum value attained during each cycle. Figure 24
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Figure 23. Normalized conditional mean rate of change of QW , 〈DQW/Dt|Σ〉 /〈QW 〉, as a function

of the normalized rate of stretching, Σ/〈QW 〉1/2.

shows this result for Q̇W/〈QW 〉3/2, where Q̇W/〈QW 〉3/2 normalized by its maximum
value during a cycle has been plotted for a number of evolution cycles. The results for
Σ̇ are similar. The cycle period is found to be slightly larger than that found by Martin
et al. (1998) for the (RA, QA) phase plane, i.e. T ∗0 ≈ 1.15T0, where T ∗0 represents the
period deduced from the data in the (Σ,QW ) phase plane. It is interesting to note that
in the (Σ,QW ) conditional phase plane a limit cycle behaviour is also present. Data

in the domain 0.21 〈QW 〉 < QW < 2.25 〈QW 〉 and −0.07 〈QW 〉1/2 < Σ < 0.54 〈QW 〉1/2
spiral into the point located at approximately (0.25, 0.75), while data outside this
domain spiral outwards away from this point.

The data shown in figure 22(a) are consistent with the idea of a stretched vortex.
Positive values of Σ are associated with focal coherent structures that are being
stretched where fluid particles are attracted to the low-pressure region at the core
of the focal structure. As fluid particles approach the focal core, the local value of
QW increases. Negative values of Σ are associated with focal coherent structures
that are being contracted and hence have a local UF/C topology. This topological
behaviour tends to be observed towards the tips of focal structures as shown in the
iso-discriminant visualization in figure 11 the vortex line visualization of figure 14
and as previously reported in the topological visualizations of focal structures in
turbulent mixing layers and wakes by Soria & Cantwell (1994). At the extremities of
these focal structures the fluid particles are being forced away from the core due to
vorticity contraction. As UF/C fluid regions move away from the core of these focal
structures, the local value of QW is found to decrease.

5.2.5. The (Σ,−QS ) phase plane

Figure 25(a) shows the CMT in the (Σ, −QS ) phase plane with a magnified view
of the region close to the origin shown in figure 25(b). It is observed that some of

the trajectories travel in a clockwise manner towards a region where (Σ/〈QW 〉1/2,
−QS/〈QW 〉) ' (−0.15, 0.2). The clockwise orientation of the (Σ, −QS ) system is
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Figure 24. Evolution of Q̇W/〈QW 〉3/2 for a number of cycles. The dependent data for each cycle
have been normalized by its maximum value during the cycle.

contrary to the anti-clockwise orientation of the (Σ, QW ) system. Clockwise trajectories
in the (Σ, −QS ) system indicate that decreasing values of −QS are associated with
positive values of Σ, i.e. vorticity stretching, while increasing values of −QS are
associated with negative values of Σ, i.e. vorticity contraction. Note that the stable
node in this system is located at a negative value of Σ, whereas for the (Σ, QW ) system
the location of the stable node is at a positive value of Σ. CMT in regions where the
value of −QS is large appear to move to even larger values of −QS . However, the
joint PDF shown in figure 8(d) indicates that the probability of fluid evolving along
these latter CMT is very rare.

6. Conclusions
Computations of homogeneous isotropic turbulence are used in this study to

investigate focal regions which are defined as regions where DA is greater than a small
positive value (i.e. DA > 0.01 〈QW 〉3). These regions occupy 64% of the fluid volume
and contain 85% of the integrated QW (or enstrophy) and 54% of the total dissipation

of mechanical energy. The data also show that 〈QW |DA〉 ∝ D
1/3
A for DA > 1 〈QW 〉3, i.e.

when QS/QW � 1 and |RA| � (
4
27
Q3
W

)1/2
, as expected from the theoretical analysis.

However, the data also show that 〈−QS |DA〉 ∝ D
1/7
A for DA > 0, an unexpected result

which may warrant further investigation.
The idea of using conditional averages to obtain mean time rate of change of

invariants and trajectories in the phase planes of invariants is novel and provides
significant new information on the dynamics of the invariants. Evolution character-
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Figure 25. (a) The CMT of the invariants Σ and −QS computed from data of forced isotropic
turbulence at Reλ = 70.9. (b) A magnified view of the origin.

istics are shown in terms of trajectories in the various phase planes of invariants.
These trajectories are the ‘line-of-sight’ average onto a two-dimensional phase plane
of complicated multi-dimensional dynamics.
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